{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Application {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped hiding (wk)
import Definition.Untyped as U
open import Definition.Untyped.Properties
open import Definition.Typed
import Definition.Typed.Weakening as T
open import Definition.Typed.Properties
open import Definition.Typed.RedSteps
open import Definition.LogicalRelation
open import Definition.LogicalRelation.ShapeView
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.Properties
open import Tools.Empty
open import Tools.Product
import Tools.PropositionalEquality as PE
appTerm′ : ∀ {F G t u Γ l l′ l″}
([F] : Γ ⊩⟨ l″ ⟩ F)
([G[u]] : Γ ⊩⟨ l′ ⟩ G [ u ])
([ΠFG] : Γ ⊩⟨ l ⟩Π Π F ▹ G)
([t] : Γ ⊩⟨ l ⟩ t ∷ Π F ▹ G / Π-intr [ΠFG])
([u] : Γ ⊩⟨ l″ ⟩ u ∷ F / [F])
→ Γ ⊩⟨ l′ ⟩ t ∘ u ∷ G [ u ] / [G[u]]
appTerm′ {t = t} {Γ = Γ} [F] [G[u]] (noemb (Π F G D ⊢F ⊢G A≡A [F′] [G′] G-ext))
(Πₜ f d funcF f≡f [f] [f]₁) [u] =
let ΠFG≡ΠF′G′ = whnfRed* (red D) Π
F≡F′ , G≡G′ = Π-PE-injectivity ΠFG≡ΠF′G′
F≡idF′ = PE.trans F≡F′ (PE.sym (wk-id _))
idG′ᵤ≡Gᵤ = PE.cong (λ x → x [ _ ]) (PE.trans (wk-lift-id _) (PE.sym G≡G′))
idf∘u≡f∘u = (PE.cong (λ x → x ∘ _) (wk-id _))
⊢Γ = wf ⊢F
[u]′ = irrelevanceTerm′ F≡idF′ [F] ([F′] T.id ⊢Γ) [u]
[f∘u] = irrelevanceTerm″ idG′ᵤ≡Gᵤ idf∘u≡f∘u
([G′] T.id ⊢Γ [u]′) [G[u]] ([f]₁ T.id ⊢Γ [u]′)
⊢u = escapeTerm [F] [u]
d′ = PE.subst (λ x → Γ ⊢ t ⇒* f ∷ x) (PE.sym ΠFG≡ΠF′G′) (redₜ d)
in proj₁ (redSubst*Term (app-subst* d′ ⊢u) [G[u]] [f∘u])
appTerm′ [F] [G[u]] (emb 0<1 x) [t] [u] = appTerm′ [F] [G[u]] x [t] [u]
appTerm : ∀ {F G t u Γ l l′ l″}
([F] : Γ ⊩⟨ l″ ⟩ F)
([G[u]] : Γ ⊩⟨ l′ ⟩ G [ u ])
([ΠFG] : Γ ⊩⟨ l ⟩ Π F ▹ G)
([t] : Γ ⊩⟨ l ⟩ t ∷ Π F ▹ G / [ΠFG])
([u] : Γ ⊩⟨ l″ ⟩ u ∷ F / [F])
→ Γ ⊩⟨ l′ ⟩ t ∘ u ∷ G [ u ] / [G[u]]
appTerm [F] [G[u]] [ΠFG] [t] [u] =
let [t]′ = irrelevanceTerm [ΠFG] (Π-intr (Π-elim [ΠFG])) [t]
in appTerm′ [F] [G[u]] (Π-elim [ΠFG]) [t]′ [u]
app-congTerm′ : ∀ {F G t t′ u u′ Γ l l′}
([F] : Γ ⊩⟨ l′ ⟩ F)
([G[u]] : Γ ⊩⟨ l′ ⟩ G [ u ])
([ΠFG] : Γ ⊩⟨ l ⟩Π Π F ▹ G)
([t≡t′] : Γ ⊩⟨ l ⟩ t ≡ t′ ∷ Π F ▹ G / Π-intr [ΠFG])
([u] : Γ ⊩⟨ l′ ⟩ u ∷ F / [F])
([u′] : Γ ⊩⟨ l′ ⟩ u′ ∷ F / [F])
([u≡u′] : Γ ⊩⟨ l′ ⟩ u ≡ u′ ∷ F / [F])
→ Γ ⊩⟨ l′ ⟩ t ∘ u ≡ t′ ∘ u′ ∷ G [ u ] / [G[u]]
app-congTerm′ {F′} {G′} {t = t} {t′ = t′} {Γ = Γ}
[F] [G[u]] (noemb (Π F G D ⊢F ⊢G A≡A [F]₁ [G] G-ext))
(Πₜ₌ f g [ ⊢t , ⊢f , d ] [ ⊢t′ , ⊢g , d′ ] funcF funcG t≡u
(Πₜ f′ [ _ , ⊢f′ , d″ ] funcF′ f≡f [f] [f]₁)
(Πₜ g′ [ _ , ⊢g′ , d‴ ] funcG′ g≡g [g] [g]₁) [t≡u])
[a] [a′] [a≡a′] =
let [ΠFG] = Π′ F G D ⊢F ⊢G A≡A [F]₁ [G] G-ext
ΠFG≡ΠF′G′ = whnfRed* (red D) Π
F≡F′ , G≡G′ = Π-PE-injectivity ΠFG≡ΠF′G′
f≡f′ = whrDet*Term (d , functionWhnf funcF) (d″ , functionWhnf funcF′)
g≡g′ = whrDet*Term (d′ , functionWhnf funcG) (d‴ , functionWhnf funcG′)
F≡wkidF′ = PE.trans F≡F′ (PE.sym (wk-id _))
t∘x≡wkidt∘x : {a b : Term} → U.wk id a Term.∘ b PE.≡ a ∘ b
t∘x≡wkidt∘x {a} {b} = PE.cong (λ x → x ∘ b) (wk-id a)
t∘x≡wkidt∘x′ : {a : Term} → U.wk id g′ Term.∘ a PE.≡ g ∘ a
t∘x≡wkidt∘x′ {a} = PE.cong (λ x → x ∘ a) (PE.trans (wk-id _) (PE.sym g≡g′))
wkidG₁[u]≡G[u] = PE.cong (λ x → x [ _ ])
(PE.trans (wk-lift-id _) (PE.sym G≡G′))
wkidG₁[u′]≡G[u′] = PE.cong (λ x → x [ _ ])
(PE.trans (wk-lift-id _) (PE.sym G≡G′))
⊢Γ = wf ⊢F
[u]′ = irrelevanceTerm′ F≡wkidF′ [F] ([F]₁ T.id ⊢Γ) [a]
[u′]′ = irrelevanceTerm′ F≡wkidF′ [F] ([F]₁ T.id ⊢Γ) [a′]
[u≡u′]′ = irrelevanceEqTerm′ F≡wkidF′ [F] ([F]₁ T.id ⊢Γ) [a≡a′]
[G[u′]] = irrelevance′ wkidG₁[u′]≡G[u′] ([G] T.id ⊢Γ [u′]′)
[G[u≡u′]] = irrelevanceEq″ wkidG₁[u]≡G[u] wkidG₁[u′]≡G[u′]
([G] T.id ⊢Γ [u]′) [G[u]]
(G-ext T.id ⊢Γ [u]′ [u′]′ [u≡u′]′)
[f′] : Γ ⊩⟨ _ ⟩ f′ ∷ Π F′ ▹ G′ / [ΠFG]
[f′] = Πₜ f′ (idRedTerm:*: ⊢f′) funcF′ f≡f [f] [f]₁
[g′] : Γ ⊩⟨ _ ⟩ g′ ∷ Π F′ ▹ G′ / [ΠFG]
[g′] = Πₜ g′ (idRedTerm:*: ⊢g′) funcG′ g≡g [g] [g]₁
[f∘u] = appTerm [F] [G[u]] [ΠFG]
(irrelevanceTerm″ PE.refl (PE.sym f≡f′) [ΠFG] [ΠFG] [f′])
[a]
[g∘u′] = appTerm [F] [G[u′]] [ΠFG]
(irrelevanceTerm″ PE.refl (PE.sym g≡g′) [ΠFG] [ΠFG] [g′])
[a′]
[tu≡t′u] = irrelevanceEqTerm″ t∘x≡wkidt∘x t∘x≡wkidt∘x wkidG₁[u]≡G[u]
([G] T.id ⊢Γ [u]′) [G[u]]
([t≡u] T.id ⊢Γ [u]′)
[t′u≡t′u′] = irrelevanceEqTerm″ t∘x≡wkidt∘x′ t∘x≡wkidt∘x′ wkidG₁[u]≡G[u]
([G] T.id ⊢Γ [u]′) [G[u]]
([g] T.id ⊢Γ [u]′ [u′]′ [u≡u′]′)
d₁ = PE.subst (λ x → Γ ⊢ t ⇒* f ∷ x) (PE.sym ΠFG≡ΠF′G′) d
d₂ = PE.subst (λ x → Γ ⊢ t′ ⇒* g ∷ x) (PE.sym ΠFG≡ΠF′G′) d′
[tu≡fu] = proj₂ (redSubst*Term (app-subst* d₁ (escapeTerm [F] [a]))
[G[u]] [f∘u])
[gu′≡t′u′] = convEqTerm₂ [G[u]] [G[u′]] [G[u≡u′]]
(symEqTerm [G[u′]]
(proj₂ (redSubst*Term (app-subst* d₂ (escapeTerm [F] [a′]))
[G[u′]] [g∘u′])))
in transEqTerm [G[u]] (transEqTerm [G[u]] [tu≡fu] [tu≡t′u])
(transEqTerm [G[u]] [t′u≡t′u′] [gu′≡t′u′])
app-congTerm′ [F] [G[u]] (emb 0<1 x) [t≡t′] [u] [u′] [u≡u′] =
app-congTerm′ [F] [G[u]] x [t≡t′] [u] [u′] [u≡u′]
app-congTerm : ∀ {F G t t′ u u′ Γ l l′}
([F] : Γ ⊩⟨ l′ ⟩ F)
([G[u]] : Γ ⊩⟨ l′ ⟩ G [ u ])
([ΠFG] : Γ ⊩⟨ l ⟩ Π F ▹ G)
([t≡t′] : Γ ⊩⟨ l ⟩ t ≡ t′ ∷ Π F ▹ G / [ΠFG])
([u] : Γ ⊩⟨ l′ ⟩ u ∷ F / [F])
([u′] : Γ ⊩⟨ l′ ⟩ u′ ∷ F / [F])
([u≡u′] : Γ ⊩⟨ l′ ⟩ u ≡ u′ ∷ F / [F])
→ Γ ⊩⟨ l′ ⟩ t ∘ u ≡ t′ ∘ u′ ∷ G [ u ] / [G[u]]
app-congTerm [F] [G[u]] [ΠFG] [t≡t′] =
let [t≡t′]′ = irrelevanceEqTerm [ΠFG] (Π-intr (Π-elim [ΠFG])) [t≡t′]
in app-congTerm′ [F] [G[u]] (Π-elim [ΠFG]) [t≡t′]′