{-# OPTIONS --without-K --safe #-}
module Definition.Typed.Properties where
open import Tools.Empty using (⊥; ⊥-elim)
open import Tools.Product
open import Definition.Untyped as U hiding (wk)
open import Definition.Untyped.Properties
open import Definition.Typed
open import Tools.Nat
import Tools.PropositionalEquality as PE
wfTerm : ∀ {Γ A t} → Γ ⊢ t ∷ A → ⊢ Γ
wfTerm (ℕ ⊢Γ) = ⊢Γ
wfTerm (Π F ▹ G) = wfTerm F
wfTerm (var ⊢Γ x₁) = ⊢Γ
wfTerm (lam F t) with wfTerm t
wfTerm (lam F t) | ⊢Γ ∙ F′ = ⊢Γ
wfTerm (g ∘ a) = wfTerm a
wfTerm (zero ⊢Γ) = ⊢Γ
wfTerm (suc n) = wfTerm n
wfTerm (natrec F z s n) = wfTerm z
wfTerm (conv t A≡B) = wfTerm t
wf : ∀ {Γ A} → Γ ⊢ A → ⊢ Γ
wf (ℕ ⊢Γ) = ⊢Γ
wf (U ⊢Γ) = ⊢Γ
wf (Π F ▹ G) = wf F
wf (univ A) = wfTerm A
wfEqTerm : ∀ {Γ A t u} → Γ ⊢ t ≡ u ∷ A → ⊢ Γ
wfEqTerm (refl t) = wfTerm t
wfEqTerm (sym t≡u) = wfEqTerm t≡u
wfEqTerm (trans t≡u u≡r) = wfEqTerm t≡u
wfEqTerm (conv t≡u A≡B) = wfEqTerm t≡u
wfEqTerm (Π-cong F F≡H G≡E) = wfEqTerm F≡H
wfEqTerm (app-cong f≡g a≡b) = wfEqTerm f≡g
wfEqTerm (β-red F t a) = wfTerm a
wfEqTerm (η-eq F f g f0≡g0) = wfTerm f
wfEqTerm (suc-cong n) = wfEqTerm n
wfEqTerm (natrec-cong F≡F′ z≡z′ s≡s′ n≡n′) = wfEqTerm z≡z′
wfEqTerm (natrec-zero F z s) = wfTerm z
wfEqTerm (natrec-suc n F z s) = wfTerm n
wfEq : ∀ {Γ A B} → Γ ⊢ A ≡ B → ⊢ Γ
wfEq (univ A≡B) = wfEqTerm A≡B
wfEq (refl A) = wf A
wfEq (sym A≡B) = wfEq A≡B
wfEq (trans A≡B B≡C) = wfEq A≡B
wfEq (Π-cong F F≡H G≡E) = wfEq F≡H
subsetTerm : ∀ {Γ A t u} → Γ ⊢ t ⇒ u ∷ A → Γ ⊢ t ≡ u ∷ A
subsetTerm (natrec-subst F z s n⇒n′) =
natrec-cong (refl F) (refl z) (refl s) (subsetTerm n⇒n′)
subsetTerm (natrec-zero F z s) = natrec-zero F z s
subsetTerm (natrec-suc n F z s) = natrec-suc n F z s
subsetTerm (app-subst t⇒u a) = app-cong (subsetTerm t⇒u) (refl a)
subsetTerm (β-red A t a) = β-red A t a
subsetTerm (conv t⇒u A≡B) = conv (subsetTerm t⇒u) A≡B
subset : ∀ {Γ A B} → Γ ⊢ A ⇒ B → Γ ⊢ A ≡ B
subset (univ A⇒B) = univ (subsetTerm A⇒B)
subset*Term : ∀ {Γ A t u} → Γ ⊢ t ⇒* u ∷ A → Γ ⊢ t ≡ u ∷ A
subset*Term (id t) = refl t
subset*Term (t⇒t′ ⇨ t⇒*u) = trans (subsetTerm t⇒t′) (subset*Term t⇒*u)
subset* : ∀ {Γ A B} → Γ ⊢ A ⇒* B → Γ ⊢ A ≡ B
subset* (id A) = refl A
subset* (A⇒A′ ⇨ A′⇒*B) = trans (subset A⇒A′) (subset* A′⇒*B)
redFirstTerm : ∀ {Γ t u A} → Γ ⊢ t ⇒ u ∷ A → Γ ⊢ t ∷ A
redFirstTerm (conv t⇒u A≡B) = conv (redFirstTerm t⇒u) A≡B
redFirstTerm (app-subst t⇒u a) = (redFirstTerm t⇒u) ∘ a
redFirstTerm (β-red A t a) = (lam A t) ∘ a
redFirstTerm (natrec-subst F z s n⇒n′) = natrec F z s (redFirstTerm n⇒n′)
redFirstTerm (natrec-zero F z s) = natrec F z s (zero (wfTerm z))
redFirstTerm (natrec-suc n F z s) = natrec F z s (suc n)
redFirst : ∀ {Γ A B} → Γ ⊢ A ⇒ B → Γ ⊢ A
redFirst (univ A⇒B) = univ (redFirstTerm A⇒B)
redFirst*Term : ∀ {Γ t u A} → Γ ⊢ t ⇒* u ∷ A → Γ ⊢ t ∷ A
redFirst*Term (id t) = t
redFirst*Term (t⇒t′ ⇨ t′⇒*u) = redFirstTerm t⇒t′
redFirst* : ∀ {Γ A B} → Γ ⊢ A ⇒* B → Γ ⊢ A
redFirst* (id A) = A
redFirst* (A⇒A′ ⇨ A′⇒*B) = redFirst A⇒A′
noNe : ∀ {t A} → ε ⊢ t ∷ A → Neutral t → ⊥
noNe (var x₁ ()) (var x)
noNe (conv ⊢t x) (var n) = noNe ⊢t (var n)
noNe (⊢t ∘ ⊢t₁) (_∘_ neT) = noNe ⊢t neT
noNe (conv ⊢t x) (_∘_ neT) = noNe ⊢t (_∘_ neT)
noNe (natrec x ⊢t ⊢t₁ ⊢t₂) (natrec neT) = noNe ⊢t₂ neT
noNe (conv ⊢t x) (natrec neT) = noNe ⊢t (natrec neT)
neRedTerm : ∀ {Γ t u A} (d : Γ ⊢ t ⇒ u ∷ A) (n : Neutral t) → ⊥
neRedTerm (conv d x) n = neRedTerm d n
neRedTerm (app-subst d x) (_∘_ n) = neRedTerm d n
neRedTerm (β-red x x₁ x₂) (_∘_ ())
neRedTerm (natrec-subst x x₁ x₂ d) (natrec n₁) = neRedTerm d n₁
neRedTerm (natrec-zero x x₁ x₂) (natrec ())
neRedTerm (natrec-suc x x₁ x₂ x₃) (natrec ())
neRed : ∀ {Γ A B} (d : Γ ⊢ A ⇒ B) (N : Neutral A) → ⊥
neRed (univ x) N = neRedTerm x N
whnfRedTerm : ∀ {Γ t u A} (d : Γ ⊢ t ⇒ u ∷ A) (w : Whnf t) → ⊥
whnfRedTerm (conv d x) w = whnfRedTerm d w
whnfRedTerm (app-subst d x) (ne (_∘_ x₁)) = neRedTerm d x₁
whnfRedTerm (β-red x x₁ x₂) (ne (_∘_ ()))
whnfRedTerm (natrec-subst x x₁ x₂ d) (ne (natrec x₃)) = neRedTerm d x₃
whnfRedTerm (natrec-zero x x₁ x₂) (ne (natrec ()))
whnfRedTerm (natrec-suc x x₁ x₂ x₃) (ne (natrec ()))
whnfRed : ∀ {Γ A B} (d : Γ ⊢ A ⇒ B) (w : Whnf A) → ⊥
whnfRed (univ x) w = whnfRedTerm x w
whnfRed*Term : ∀ {Γ t u A} (d : Γ ⊢ t ⇒* u ∷ A) (w : Whnf t) → t PE.≡ u
whnfRed*Term (id x) U = PE.refl
whnfRed*Term (id x) Π = PE.refl
whnfRed*Term (id x) ℕ = PE.refl
whnfRed*Term (id x) lam = PE.refl
whnfRed*Term (id x) zero = PE.refl
whnfRed*Term (id x) suc = PE.refl
whnfRed*Term (id x) (ne x₁) = PE.refl
whnfRed*Term (conv x x₁ ⇨ d) w = ⊥-elim (whnfRedTerm x w)
whnfRed*Term (x ⇨ d) (ne x₁) = ⊥-elim (neRedTerm x x₁)
whnfRed* : ∀ {Γ A B} (d : Γ ⊢ A ⇒* B) (w : Whnf A) → A PE.≡ B
whnfRed* (id x) w = PE.refl
whnfRed* (x ⇨ d) w = ⊥-elim (whnfRed x w)
whrDetTerm : ∀{Γ t u A u′ A′} (d : Γ ⊢ t ⇒ u ∷ A) (d′ : Γ ⊢ t ⇒ u′ ∷ A′) → u PE.≡ u′
whrDetTerm (conv d x) d′ = whrDetTerm d d′
whrDetTerm d (conv d′ x₁) = whrDetTerm d d′
whrDetTerm (app-subst d x) (app-subst d′ x₁) rewrite whrDetTerm d d′ = PE.refl
whrDetTerm (app-subst d x) (β-red x₁ x₂ x₃) = ⊥-elim (whnfRedTerm d lam)
whrDetTerm (β-red x x₁ x₂) (app-subst d x₃) = ⊥-elim (whnfRedTerm d lam)
whrDetTerm (β-red x x₁ x₂) (β-red x₃ x₄ x₅) = PE.refl
whrDetTerm (natrec-subst x x₁ x₂ d) (natrec-subst x₃ x₄ x₅ d′) rewrite whrDetTerm d d′ = PE.refl
whrDetTerm (natrec-subst x x₁ x₂ d) (natrec-zero x₃ x₄ x₅) = ⊥-elim (whnfRedTerm d zero)
whrDetTerm (natrec-subst x x₁ x₂ d) (natrec-suc x₃ x₄ x₅ x₆) = ⊥-elim (whnfRedTerm d suc)
whrDetTerm (natrec-zero x x₁ x₂) (natrec-subst x₃ x₄ x₅ d′) = ⊥-elim (whnfRedTerm d′ zero)
whrDetTerm (natrec-zero x x₁ x₂) (natrec-zero x₃ x₄ x₅) = PE.refl
whrDetTerm (natrec-suc x x₁ x₂ x₃) (natrec-subst x₄ x₅ x₆ d′) = ⊥-elim (whnfRedTerm d′ suc)
whrDetTerm (natrec-suc x x₁ x₂ x₃) (natrec-suc x₄ x₅ x₆ x₇) = PE.refl
whrDet : ∀{Γ A B B′} (d : Γ ⊢ A ⇒ B) (d′ : Γ ⊢ A ⇒ B′) → B PE.≡ B′
whrDet (univ x) (univ x₁) = whrDetTerm x x₁
whrDet↘Term : ∀{Γ t u A u′} (d : Γ ⊢ t ↘ u ∷ A) (d′ : Γ ⊢ t ⇒* u′ ∷ A) → Γ ⊢ u′ ⇒* u ∷ A
whrDet↘Term (proj₁ , proj₂) (id x) = proj₁
whrDet↘Term (id x , proj₂) (x₁ ⇨ d′) = ⊥-elim (whnfRedTerm x₁ proj₂)
whrDet↘Term (x ⇨ proj₁ , proj₂) (x₁ ⇨ d′) =
whrDet↘Term (PE.subst (λ x₂ → _ ⊢ x₂ ↘ _ ∷ _) (whrDetTerm x x₁) (proj₁ , proj₂)) d′
whrDet*Term : ∀{Γ t u A u′} (d : Γ ⊢ t ↘ u ∷ A) (d′ : Γ ⊢ t ↘ u′ ∷ A) → u PE.≡ u′
whrDet*Term (id x , proj₂) (id x₁ , proj₄) = PE.refl
whrDet*Term (id x , proj₂) (x₁ ⇨ proj₃ , proj₄) = ⊥-elim (whnfRedTerm x₁ proj₂)
whrDet*Term (x ⇨ proj₁ , proj₂) (id x₁ , proj₄) = ⊥-elim (whnfRedTerm x proj₄)
whrDet*Term (x ⇨ proj₁ , proj₂) (x₁ ⇨ proj₃ , proj₄) =
whrDet*Term (proj₁ , proj₂) (PE.subst (λ x₂ → _ ⊢ x₂ ↘ _ ∷ _)
(whrDetTerm x₁ x) (proj₃ , proj₄))
whrDet* : ∀{Γ A B B′} (d : Γ ⊢ A ↘ B) (d′ : Γ ⊢ A ↘ B′) → B PE.≡ B′
whrDet* (id x , proj₂) (id x₁ , proj₄) = PE.refl
whrDet* (id x , proj₂) (x₁ ⇨ proj₃ , proj₄) = ⊥-elim (whnfRed x₁ proj₂)
whrDet* (x ⇨ proj₁ , proj₂) (id x₁ , proj₄) = ⊥-elim (whnfRed x proj₄)
whrDet* (A⇒A′ ⇨ A′⇒*B , whnfB) (A⇒A″ ⇨ A″⇒*B′ , whnfB′) =
whrDet* (A′⇒*B , whnfB) (PE.subst (λ x → _ ⊢ x ↘ _)
(whrDet A⇒A″ A⇒A′)
(A″⇒*B′ , whnfB′))
idRed:*: : ∀ {Γ A} → Γ ⊢ A → Γ ⊢ A :⇒*: A
idRed:*: A = [ A , A , id A ]
idRedTerm:*: : ∀ {Γ A t} → Γ ⊢ t ∷ A → Γ ⊢ t :⇒*: t ∷ A
idRedTerm:*: t = [ t , t , id t ]
UnotInA : ∀ {A Γ} → Γ ⊢ U ∷ A → ⊥
UnotInA (conv U∷U x) = UnotInA U∷U
UnotInA[t] : ∀ {A B t a Γ}
→ t [ a ] PE.≡ U
→ Γ ⊢ a ∷ A
→ Γ ∙ A ⊢ t ∷ B
→ ⊥
UnotInA[t] () x₁ (ℕ x₂)
UnotInA[t] () x₁ (Π x₂ ▹ x₃)
UnotInA[t] x₁ x₂ (var x₃ here) rewrite x₁ = UnotInA x₂
UnotInA[t] () x₂ (var x₃ (there x₄))
UnotInA[t] () x₁ (lam x₂ x₃)
UnotInA[t] () x₁ (x₂ ∘ x₃)
UnotInA[t] () x₁ (zero x₂)
UnotInA[t] () x₁ (suc x₂)
UnotInA[t] () x₁ (natrec x₂ x₃ x₄ x₅)
UnotInA[t] x x₁ (conv x₂ x₃) = UnotInA[t] x x₁ x₂
redU*Term′ : ∀ {A B U′ Γ} → U′ PE.≡ U → Γ ⊢ A ⇒ U′ ∷ B → ⊥
redU*Term′ U′≡U (conv A⇒U x) = redU*Term′ U′≡U A⇒U
redU*Term′ () (app-subst A⇒U x)
redU*Term′ U′≡U (β-red x x₁ x₂) = UnotInA[t] U′≡U x₂ x₁
redU*Term′ () (natrec-subst x x₁ x₂ A⇒U)
redU*Term′ U′≡U (natrec-zero x x₁ x₂) rewrite U′≡U = UnotInA x₁
redU*Term′ () (natrec-suc x x₁ x₂ x₃)
redU*Term : ∀ {A B Γ} → Γ ⊢ A ⇒* U ∷ B → ⊥
redU*Term (id x) = UnotInA x
redU*Term (x ⇨ A⇒*U) = redU*Term A⇒*U
redU : ∀ {A Γ} → Γ ⊢ A ⇒ U → ⊥
redU (univ x) = redU*Term′ PE.refl x
redU* : ∀ {A Γ} → Γ ⊢ A ⇒* U → A PE.≡ U
redU* (id x) = PE.refl
redU* (x ⇨ A⇒*U) rewrite redU* A⇒*U = ⊥-elim (redU x)