{-# OPTIONS --without-K --safe #-}

module Definition.Typed.RedSteps where

open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties

open import Tools.Nat


-- Concatenation of type reduction closures
_⇨*_ :  {Γ A B C}  Γ  A ⇒* B  Γ  B ⇒* C  Γ  A ⇒* C
id ⊢B ⇨* B⇒C = B⇒C
(A⇒A′  A′⇒B) ⇨* B⇒C = A⇒A′  (A′⇒B ⇨* B⇒C)

-- Concatenation of term reduction closures
_⇨∷*_ :  {Γ A t u r}  Γ  t ⇒* u  A  Γ  u ⇒* r  A  Γ  t ⇒* r  A
id ⊢u ⇨∷* u⇒r = u⇒r
(t⇒t′  t′⇒u) ⇨∷* u⇒r = t⇒t′  (t′⇒u ⇨∷* u⇒r)

-- Conversion of reduction closures
conv* :  {Γ A B t u}  Γ  t ⇒* u  A  Γ  A  B  Γ  t ⇒* u  B
conv* (id x) A≡B = id (conv x A≡B)
conv* (x  d) A≡B = conv x A≡B  conv* d A≡B

-- Universe of reduction closures
univ* :  {Γ A B}  Γ  A ⇒* B  U  Γ  A ⇒* B
univ* (id x) = id (univ x)
univ* (x  A⇒B) = univ x  univ* A⇒B

-- Application substitution of reduction closures
app-subst* :  {Γ A B t t′ a}  Γ  t ⇒* t′  Π A  B  Γ  a  A
            Γ  t  a ⇒* t′  a  B [ a ]
app-subst* (id x) a₁ = id (x  a₁)
app-subst* (x  t⇒t′) a₁ = app-subst x a₁  app-subst* t⇒t′ a₁