{-# OPTIONS --without-K --safe #-}
module Definition.Typed.Consequences.Consistency where
open import Tools.Empty
open import Tools.Product
import Tools.PropositionalEquality as PE
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Typed.EqRelInstance
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.ShapeView
open import Definition.LogicalRelation.Substitution
open import Definition.LogicalRelation.Fundamental.Reducibility
zero≢one′ : ∀ {Γ l} ([ℕ] : Γ ⊩⟨ l ⟩ℕ ℕ)
→ Γ ⊩⟨ l ⟩ zero ≡ suc zero ∷ ℕ / ℕ-intr [ℕ] → ⊥
zero≢one′ (noemb x) (ℕₜ₌ .(suc _) .(suc _) d d′ k≡k′ (suc x₁)) =
zero≢suc (whnfRed*Term (redₜ d) zero)
zero≢one′ (noemb x) (ℕₜ₌ .zero .zero d d′ k≡k′ zero) =
zero≢suc (PE.sym (whnfRed*Term (redₜ d′) suc))
zero≢one′ (noemb x) (ℕₜ₌ k k′ d d′ k≡k′ (ne (neNfₜ₌ neK neM k≡m))) =
zero≢ne neK (whnfRed*Term (redₜ d) zero)
zero≢one′ (emb 0<1 [ℕ]) n = zero≢one′ [ℕ] n
zero≢one : ∀ {Γ} → Γ ⊢ zero ≡ suc zero ∷ ℕ → ⊥
zero≢one 0≡1 =
let [ℕ] , [0≡1] = reducibleEqTerm 0≡1
in zero≢one′ (ℕ-elim [ℕ]) (irrelevanceEqTerm [ℕ] (ℕ-intr (ℕ-elim [ℕ])) [0≡1])