{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Weakening {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped as U hiding (wk)
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Typed.Weakening as T hiding (wk; wkEq; wkTerm; wkEqTerm)
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Properties.Reflexivity
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.ShapeView
open import Tools.Product
open import Tools.Unit
import Tools.PropositionalEquality as PE
wkTermNe : ∀ {ρ Γ Δ k A} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ)
→ Γ ⊩neNf k ∷ A → Δ ⊩neNf U.wk ρ k ∷ U.wk ρ A
wkTermNe {ρ} [ρ] ⊢Δ (neNfₜ neK ⊢k k≡k) =
neNfₜ (wkNeutral ρ neK) (T.wkTerm [ρ] ⊢Δ ⊢k) (~-wk [ρ] ⊢Δ k≡k)
wkEqTermNe : ∀ {ρ Γ Δ k k′ A} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ)
→ Γ ⊩neNf k ≡ k′ ∷ A → Δ ⊩neNf U.wk ρ k ≡ U.wk ρ k′ ∷ U.wk ρ A
wkEqTermNe {ρ} [ρ] ⊢Δ (neNfₜ₌ neK neM k≡m) =
neNfₜ₌ (wkNeutral ρ neK) (wkNeutral ρ neM) (~-wk [ρ] ⊢Δ k≡m)
mutual
wkTermℕ : ∀ {ρ Γ Δ n} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ)
→ Γ ⊩ℕ n ∷ℕ → Δ ⊩ℕ U.wk ρ n ∷ℕ
wkTermℕ {ρ} [ρ] ⊢Δ (ℕₜ n d n≡n prop) =
ℕₜ (U.wk ρ n) (wkRed:*:Term [ρ] ⊢Δ d)
(≅ₜ-wk [ρ] ⊢Δ n≡n)
(wkNatural-prop [ρ] ⊢Δ prop)
wkNatural-prop : ∀ {ρ Γ Δ n} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ)
→ Natural-prop Γ n
→ Natural-prop Δ (U.wk ρ n)
wkNatural-prop ρ ⊢Δ (suc n) = suc (wkTermℕ ρ ⊢Δ n)
wkNatural-prop ρ ⊢Δ zero = zero
wkNatural-prop ρ ⊢Δ (ne nf) = ne (wkTermNe ρ ⊢Δ nf)
mutual
wkEqTermℕ : ∀ {ρ Γ Δ t u} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ)
→ Γ ⊩ℕ t ≡ u ∷ℕ
→ Δ ⊩ℕ U.wk ρ t ≡ U.wk ρ u ∷ℕ
wkEqTermℕ {ρ} [ρ] ⊢Δ (ℕₜ₌ k k′ d d′ t≡u prop) =
ℕₜ₌ (U.wk ρ k) (U.wk ρ k′) (wkRed:*:Term [ρ] ⊢Δ d)
(wkRed:*:Term [ρ] ⊢Δ d′) (≅ₜ-wk [ρ] ⊢Δ t≡u)
(wk[Natural]-prop [ρ] ⊢Δ prop)
wk[Natural]-prop : ∀ {ρ Γ Δ n n′} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ)
→ [Natural]-prop Γ n n′
→ [Natural]-prop Δ (U.wk ρ n) (U.wk ρ n′)
wk[Natural]-prop ρ ⊢Δ (suc [n≡n′]) = suc (wkEqTermℕ ρ ⊢Δ [n≡n′])
wk[Natural]-prop ρ ⊢Δ zero = zero
wk[Natural]-prop ρ ⊢Δ (ne x) = ne (wkEqTermNe ρ ⊢Δ x)
wk : ∀ {ρ Γ Δ A l} → ρ ∷ Δ ⊆ Γ → ⊢ Δ → Γ ⊩⟨ l ⟩ A → Δ ⊩⟨ l ⟩ U.wk ρ A
wk ρ ⊢Δ (U′ l′ l< ⊢Γ) = U (U l′ l< ⊢Δ)
wk ρ ⊢Δ (ℕ D) = ℕ (wkRed:*: ρ ⊢Δ D)
wk {ρ} [ρ] ⊢Δ (ne′ K D neK K≡K) =
ne′ (U.wk ρ K) (wkRed:*: [ρ] ⊢Δ D) (wkNeutral ρ neK) (~-wk [ρ] ⊢Δ K≡K)
wk {ρ} {Γ} {Δ} {A} {l} [ρ] ⊢Δ (Π′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) =
let ⊢ρF = T.wk [ρ] ⊢Δ ⊢F
[F]′ : ∀ {ρ ρ′ E} ([ρ] : ρ ∷ E ⊆ Δ) ([ρ′] : ρ′ ∷ Δ ⊆ Γ) (⊢E : ⊢ E)
→ E ⊩⟨ l ⟩ U.wk ρ (U.wk ρ′ F)
[F]′ {ρ} {ρ′} [ρ] [ρ′] ⊢E = irrelevance′
(PE.sym (wk-comp ρ ρ′ F))
([F] ([ρ] •ₜ [ρ′]) ⊢E)
[a]′ : ∀ {ρ ρ′ E a} ([ρ] : ρ ∷ E ⊆ Δ) ([ρ′] : ρ′ ∷ Δ ⊆ Γ) (⊢E : ⊢ E)
([a] : E ⊩⟨ l ⟩ a ∷ U.wk ρ (U.wk ρ′ F) / [F]′ [ρ] [ρ′] ⊢E)
→ E ⊩⟨ l ⟩ a ∷ U.wk (ρ • ρ′) F / [F] ([ρ] •ₜ [ρ′]) ⊢E
[a]′ {ρ} {ρ′} [ρ] [ρ′] ⊢E [a] = irrelevanceTerm′ (wk-comp ρ ρ′ F)
([F]′ [ρ] [ρ′] ⊢E) ([F] ([ρ] •ₜ [ρ′]) ⊢E) [a]
[G]′ : ∀ {ρ ρ′ E a} ([ρ] : ρ ∷ E ⊆ Δ) ([ρ′] : ρ′ ∷ Δ ⊆ Γ) (⊢E : ⊢ E)
([a] : E ⊩⟨ l ⟩ a ∷ U.wk ρ (U.wk ρ′ F) / [F]′ [ρ] [ρ′] ⊢E)
→ E ⊩⟨ l ⟩ U.wk (lift (ρ • ρ′)) G [ a ]
[G]′ η η′ ⊢E [a] = [G] (η •ₜ η′) ⊢E ([a]′ η η′ ⊢E [a])
in Π′ (U.wk ρ F) (U.wk (lift ρ) G) (T.wkRed:*: [ρ] ⊢Δ D) ⊢ρF
(T.wk (lift [ρ]) (⊢Δ ∙ ⊢ρF) ⊢G)
(≅-wk [ρ] ⊢Δ A≡A)
(λ {ρ₁} [ρ₁] ⊢Δ₁ → irrelevance′ (PE.sym (wk-comp ρ₁ ρ F))
([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁))
(λ {ρ₁} [ρ₁] ⊢Δ₁ [a] → irrelevance′ (wk-comp-subst ρ₁ ρ G)
([G]′ [ρ₁] [ρ] ⊢Δ₁ [a]))
(λ {ρ₁} [ρ₁] ⊢Δ₁ [a] [b] [a≡b] →
let [a≡b]′ = irrelevanceEqTerm′ (wk-comp ρ₁ ρ F)
([F]′ [ρ₁] [ρ] ⊢Δ₁)
([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁)
[a≡b]
in irrelevanceEq″ (wk-comp-subst ρ₁ ρ G)
(wk-comp-subst ρ₁ ρ G)
([G]′ [ρ₁] [ρ] ⊢Δ₁ [a])
(irrelevance′
(wk-comp-subst ρ₁ ρ G)
([G]′ [ρ₁] [ρ] ⊢Δ₁ [a]))
(G-ext ([ρ₁] •ₜ [ρ]) ⊢Δ₁
([a]′ [ρ₁] [ρ] ⊢Δ₁ [a])
([a]′ [ρ₁] [ρ] ⊢Δ₁ [b])
[a≡b]′))
wk ρ ⊢Δ (emb 0<1 x) = emb 0<1 (wk ρ ⊢Δ x)
wkEq : ∀ {ρ Γ Δ A B l} → ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([A] : Γ ⊩⟨ l ⟩ A)
→ Γ ⊩⟨ l ⟩ A ≡ B / [A]
→ Δ ⊩⟨ l ⟩ U.wk ρ A ≡ U.wk ρ B / wk [ρ] ⊢Δ [A]
wkEq ρ ⊢Δ (U′ _ _ _) PE.refl = PE.refl
wkEq ρ ⊢Δ (ℕ D) A≡B = wkRed* ρ ⊢Δ A≡B
wkEq {ρ} [ρ] ⊢Δ (ne′ _ _ _ _) (ne₌ M D′ neM K≡M) =
ne₌ (U.wk ρ M) (wkRed:*: [ρ] ⊢Δ D′)
(wkNeutral ρ neM) (~-wk [ρ] ⊢Δ K≡M)
wkEq {ρ} [ρ] ⊢Δ (Π′ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Π₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
Π₌ (U.wk ρ F′) (U.wk (lift ρ) G′) (T.wkRed* [ρ] ⊢Δ D′) (≅-wk [ρ] ⊢Δ A≡B)
(λ {ρ₁} [ρ₁] ⊢Δ₁ → irrelevanceEq″ (PE.sym (wk-comp ρ₁ ρ F))
(PE.sym (wk-comp ρ₁ ρ F′))
([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁)
(irrelevance′ (PE.sym (wk-comp ρ₁ ρ F))
([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁))
([F≡F′] ([ρ₁] •ₜ [ρ]) ⊢Δ₁))
(λ {ρ₁} [ρ₁] ⊢Δ₁ [a] →
let [a]′ = irrelevanceTerm′ (wk-comp ρ₁ ρ F)
(irrelevance′ (PE.sym (wk-comp ρ₁ ρ F))
([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁))
([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁) [a]
in irrelevanceEq″ (wk-comp-subst ρ₁ ρ G)
(wk-comp-subst ρ₁ ρ G′)
([G] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′)
(irrelevance′ (wk-comp-subst ρ₁ ρ G)
([G] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′))
([G≡G′] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′))
wkEq ρ ⊢Δ (emb 0<1 x) A≡B = wkEq ρ ⊢Δ x A≡B
wkTerm : ∀ {ρ Γ Δ A t l} ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([A] : Γ ⊩⟨ l ⟩ A)
→ Γ ⊩⟨ l ⟩ t ∷ A / [A]
→ Δ ⊩⟨ l ⟩ U.wk ρ t ∷ U.wk ρ A / wk [ρ] ⊢Δ [A]
wkTerm {ρ} [ρ] ⊢Δ (U′ .⁰ 0<1 ⊢Γ) (Uₜ A d typeA A≡A [t]) =
Uₜ (U.wk ρ A) (wkRed:*:Term [ρ] ⊢Δ d)
(wkType ρ typeA) (≅ₜ-wk [ρ] ⊢Δ A≡A) (wk [ρ] ⊢Δ [t])
wkTerm ρ ⊢Δ (ℕ D) [t] = wkTermℕ ρ ⊢Δ [t]
wkTerm {ρ} [ρ] ⊢Δ (ne′ K D neK K≡K) (neₜ k d nf) =
neₜ (U.wk ρ k) (wkRed:*:Term [ρ] ⊢Δ d) (wkTermNe [ρ] ⊢Δ nf)
wkTerm {ρ} [ρ] ⊢Δ (Π′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πₜ f d funcF f≡f [f] [f]₁) =
Πₜ (U.wk ρ f) (wkRed:*:Term [ρ] ⊢Δ d) (wkFunction ρ funcF)
(≅ₜ-wk [ρ] ⊢Δ f≡f)
(λ {ρ₁} [ρ₁] ⊢Δ₁ [a] [b] [a≡b] →
let F-compEq = wk-comp ρ₁ ρ F
G-compEq = wk-comp-subst ρ₁ ρ G
[F]₁ = [F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁
[F]₂ = irrelevance′ (PE.sym (wk-comp ρ₁ ρ F)) [F]₁
[a]′ = irrelevanceTerm′ F-compEq [F]₂ [F]₁ [a]
[b]′ = irrelevanceTerm′ F-compEq [F]₂ [F]₁ [b]
[G]₁ = [G] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′
[G]₂ = irrelevance′ G-compEq [G]₁
[a≡b]′ = irrelevanceEqTerm′ F-compEq [F]₂ [F]₁ [a≡b]
in irrelevanceEqTerm″ (PE.cong (λ x → x ∘ _) (PE.sym (wk-comp ρ₁ ρ _)))
(PE.cong (λ x → x ∘ _) (PE.sym (wk-comp ρ₁ ρ _)))
G-compEq
[G]₁ [G]₂
([f] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′ [b]′ [a≡b]′))
(λ {ρ₁} [ρ₁] ⊢Δ₁ [a] →
let [F]₁ = [F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁
[F]₂ = irrelevance′ (PE.sym (wk-comp ρ₁ ρ F)) [F]₁
[a]′ = irrelevanceTerm′ (wk-comp ρ₁ ρ F) [F]₂ [F]₁ [a]
[G]₁ = [G] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′
[G]₂ = irrelevance′ (wk-comp-subst ρ₁ ρ G) [G]₁
in irrelevanceTerm″ (wk-comp-subst ρ₁ ρ G)
(PE.cong (λ x → x ∘ _) (PE.sym (wk-comp ρ₁ ρ _)))
[G]₁ [G]₂ ([f]₁ ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′))
wkTerm ρ ⊢Δ (emb 0<1 x) t = wkTerm ρ ⊢Δ x t
wkEqTerm : ∀ {ρ Γ Δ A t u l} ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([A] : Γ ⊩⟨ l ⟩ A)
→ Γ ⊩⟨ l ⟩ t ≡ u ∷ A / [A]
→ Δ ⊩⟨ l ⟩ U.wk ρ t ≡ U.wk ρ u ∷ U.wk ρ A / wk [ρ] ⊢Δ [A]
wkEqTerm {ρ} [ρ] ⊢Δ (U′ .⁰ 0<1 ⊢Γ) (Uₜ₌ A B d d′ typeA typeB A≡B [t] [u] [t≡u]) =
Uₜ₌ (U.wk ρ A) (U.wk ρ B) (wkRed:*:Term [ρ] ⊢Δ d) (wkRed:*:Term [ρ] ⊢Δ d′)
(wkType ρ typeA) (wkType ρ typeB) (≅ₜ-wk [ρ] ⊢Δ A≡B)
(wk [ρ] ⊢Δ [t]) (wk [ρ] ⊢Δ [u]) (wkEq [ρ] ⊢Δ [t] [t≡u])
wkEqTerm ρ ⊢Δ (ℕ D) [t≡u] = wkEqTermℕ ρ ⊢Δ [t≡u]
wkEqTerm {ρ} [ρ] ⊢Δ (ne′ K D neK K≡K) (neₜ₌ k m d d′ nf) =
neₜ₌ (U.wk ρ k) (U.wk ρ m)
(wkRed:*:Term [ρ] ⊢Δ d) (wkRed:*:Term [ρ] ⊢Δ d′)
(wkEqTermNe [ρ] ⊢Δ nf)
wkEqTerm {ρ} [ρ] ⊢Δ (Π′ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πₜ₌ f g d d′ funcF funcG f≡g [t] [u] [f≡g]) =
let [A] = Π′ F G D ⊢F ⊢G A≡A [F] [G] G-ext
in Πₜ₌ (U.wk ρ f) (U.wk ρ g) (wkRed:*:Term [ρ] ⊢Δ d) (wkRed:*:Term [ρ] ⊢Δ d′)
(wkFunction ρ funcF) (wkFunction ρ funcG)
(≅ₜ-wk [ρ] ⊢Δ f≡g) (wkTerm [ρ] ⊢Δ [A] [t]) (wkTerm [ρ] ⊢Δ [A] [u])
(λ {ρ₁} [ρ₁] ⊢Δ₁ [a] →
let [F]₁ = [F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁
[F]₂ = irrelevance′ (PE.sym (wk-comp ρ₁ ρ F)) [F]₁
[a]′ = irrelevanceTerm′ (wk-comp ρ₁ ρ F) [F]₂ [F]₁ [a]
[G]₁ = [G] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′
[G]₂ = irrelevance′ (wk-comp-subst ρ₁ ρ G) [G]₁
in irrelevanceEqTerm″ (PE.cong (λ y → y ∘ _) (PE.sym (wk-comp ρ₁ ρ _)))
(PE.cong (λ y → y ∘ _) (PE.sym (wk-comp ρ₁ ρ _)))
(wk-comp-subst ρ₁ ρ G)
[G]₁ [G]₂
([f≡g] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′))
wkEqTerm ρ ⊢Δ (emb 0<1 x) t≡u = wkEqTerm ρ ⊢Δ x t≡u